An experimental and kinetic modeling study of methyl formate low-pressure flames
نویسندگان
چکیده
The oxidation of methyl formate (CH3OCHO), the simplest methyl ester, is studied in a series of burnerstabilized laminar flames at pressures of 22–30 Torr and equivalence ratios (U) from 1.0 to 1.8 for flame conditions of 25–35% fuel. Flame structures are determined by quantitative measurements of species mole fractions with flame-sampling molecular-beam synchrotron photoionization mass spectrometry (PIMS). Methyl formate is observed to be converted to methanol, formaldehyde and methane as major intermediate species of mechanistic relevance. Smaller amounts of ethylene and acetylene are also formed from methyl formate oxidation. Reactant, product and major intermediate species profiles are in good agreement with the computations of a recently developed kinetic model for methyl formate oxidation [S. Dooley, M.P. Burke, M. Chaos, Y. Stein, F.L. Dryer, V.P. Zhukov, O. Finch, J.M. Simmie, H.J. Curran, Int. J. Chem. Kinet. 42 (2010) 527–529] which shows that hydrogen abstraction reactions dominate fuel consumption under the tested flame conditions. Radical–radical reactions are shown to be significant in the formation of a number of small concentration intermediates, including the production of ethyl formate (C2H5OCHO), the subsequent decomposition of which is the major source of observed ethylene concentrations. The good agreement of model computations with this set of experimental data provides a further test of the predictive capabilities of the proposed mechanism of methyl formate oxidation. Other salient issues in the development of this model are discussed, including recent controversy regarding the methyl formate decomposition mechanism, and uncertainties in the experimental measurement and modeling of low-pressure flame-sampling experiments. Kinetic model computations show that worst-case disturbances to the measured temperature field, which may be caused by the insertion of the sampling cone into the flame, do not alter mechanistic conclusions provided by the kinetic model. However, such perturbations are shown to be responsible for disparities in species location between measurement and computation. 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
منابع مشابه
Kinetic Modeling of Methyl Formate Oxidation
A kinetic model for methyl formate oxidation is generated using our open-source Reaction Mechanism Generator (RMG) software, supplemented with high level quantum calculations and transition state theory (TST). New rate coefficients are calculated for the decomposition pathways of methyl formate, methoxy-formyl (CH3OC ·O), and formyloxy-methyl (C H2OCHO), and hydrogen abstractions from methyl fo...
متن کاملStudies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement
The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...
متن کاملExperimental, Kinetics and Isotherm Modeling of Carbon Dioxide Adsorption with 13X Zeolite in a fixed bed column
In this work, zeolite 13X with porosity structure has been used as an adsorbent for adsorption of CO2 flue gas. The effect of operating conditions including pressure and time on adsorption capacity were investigated. The experiments conditions are constant temperature, the range of pressure 1 - 9 bar and the registration of adsorption capacity with passing of time. Experimental data were adjust...
متن کاملAssessment of kinetic modeling for lean H2/CH4/O2/diluent flames at high pressures
Experimental measurements of burning rates, analysis of key reactions and kinetic pathways, and modeling studies were performed for H2/CH4/O2/diluent flames spanning a wide range of fuel-lean conditions: equivalence ratios from 0.30 to 1.0, flame temperatures from 1400 to 1800 K, pressures from 1 to 25 atm, CH4 fuel fractions from 0 to 0.1. The experimental data show negative pressure dependenc...
متن کاملDetailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels
Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against ...
متن کامل